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Abstract 

Minimax serves a foundational role in our understanding of strategic behavior, much like 
that found in business and political settings. Investigations of minimax have traditionally 
utilized laboratory experiments with novice players but have increasingly moved toward 
field studies of professional athletes. Implicit in this move has been the shift away from 
choice sets precisely defined by researchers to assumed choice sets that may not 
represent the real-world decisions of players. This paper harmonizes real-world choices 
with those analyzed by examining the offensive third-down play of the University of 
Central Arkansas’s American college football team. Interviews with a coach revealed 
the use of grouping techniques to reduce the number of in-game decisions, conserving 
cognitive resources and facilitating strategic behavior. I model third-down play as the 
matching pennies game and test the equilibrium prediction of equalized success 
probabilities across strategies. Results indicate that grouping techniques can simplify 
the implementation of optimal play in complex settings, but that creating appropriate 
groupings can be difficult. 
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Introduction 

Strategic play is required in many business and political settings. At the heart of 
strategic behavior is von Neumann’s minimax theorem. Whether the predictions of 
minimax hold in practice has been the focus of much scholarship. Early work largely 
studied novice players in laboratory settings where researchers precisely defined choice 
sets. Researchers later examined decision making in the real world by studying 
professional athletes in competition. This field research had two advantages: 
participants had strong incentives to play an optimal strategy and they were 
experienced. 

The evolution of mixed-strategy analyses from laboratory to field has improved 
our real-world understanding of strategic behavior. However, an important feature was 
lost as research shifted domains. Researchers no longer defined the choices of 
participants and instead assumed the choice set players faced. Without intimate 
knowledge of the game, an assumed choice set may differ from the choices made by 
players, particularly in complex settings. Morabito (2024) found evidence of this 
disconnect when examining the actions of female professional soccer players and the 
previous theoretical assumptions of the discipline. Aligning theoretical assumptions with 
real-world actions is important because improper assumptions may bias researchers’ 
conclusions and distort our understanding of strategic behavior. 
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This paper harmonizes the choices made by players with those analyzed using a 
unique dataset from a representative American college football team. Specifically, I 
identify the third-down choices made by the offense of the University of Central 
Arkansas’s (UCA) football team. Interviews with a UCA coach revealed the use of 
grouping techniques to reduce the number of in-game decisions. Because playing 
minimax in real-world settings is difficult (Kovash & Levitt, 2009), such grouping 
techniques can conserve cognitive resources and simplify implementation of strategic 
play. Statistical analysis is used to test whether in-game play reflects the intended 
strategy of UCA’s offense. I then model third downs as the matching pennies game and 
empirically test the equilibrium prediction of equalized success probabilities across 
strategies. Determining whether grouping techniques facilitate optimal play is important 
because deviations from equilibrium reduce output (Kovash & Levitt, 2009). 

The results of this paper indicate that in most – but not all – distance groupings, 
UCA adheres to its pre-defined choice sets. Regression analysis yields that UCA 
exhibits optimal play both across and within distance bins, a finding that contradicts 
previous studies of play selection. These results suggest that reducing the number of 
decisions can simplify the implementation of mixed strategies in complex settings. 
Appropriately consolidating the many unique decisions one faces into a smaller number 
of choices, though, can be difficult. 

Related Literature 

Early investigations of minimax relied on data generated by laboratory 
experiments where researchers could precisely define choice sets. Most experiments 
found that participants deviated from equilibrium play because they lacked the 
appropriate experience or incentives to play strategically (Brown & Rosenthal, 1990; 
Ochs, 1995; Erev & Roth, 1998). Accordingly, scholars turned to data generated by 
sports where expert players are experienced and highly motivated to play strategically. 

The evidence provided by sports offers stronger support for equilibrium play. 
Investigations of penalty kicks in soccer regularly indicate that players both equalize 
their probabilities of success across strategies and randomize their play (Chiappori, 
Levitt, & Groseclose, 2002; Palacios-Huerta, 2003; Coloma, 2007; Dohmen & 
Sonnabend, 2018; Malkov, 2018; Morabito, 2024). Most studies utilizing professional 
tennis reveal that players’ win rates are equalized when serving left or right, though the 
evidence as to whether players randomize serve directions is more mixed (Walker & 
Wooders, 2001; Hsu, Huang, & Tang, 2007; Spiliopoulos, 2018; Gauriot, Page, & 
Wooders, 2023; Anderson et al., 2024).  

More complex sports environments offer less-than-conclusive findings. The 
evidence from professional baseball is dependent on the strategic aspect of the game. 
For instance, hitters deciding whether to swing at the first pitch do not equalize payoffs 
across their respective strategies, but base runners deciding whether to steal second 
base do (Downey & McGarrity, 2015; Choe & Kim, 2019). Most – but not all – evidence 
indicates that pitchers selecting pitch types fail to equalize payoffs across their 
respective strategies, a result that Bhattacharya and Howard (2022) argue stems from 
rational inattention (Kovash & Levitt, 2009; Hsiao et al., 2024; White & Smith, 2024). 
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Moreover, Gmeiner (2019) finds evidence that pitchers and hitters differ in their ability to 
make history-based adjustments towards optimal play. 

Evidence from professional American football is also mixed. Studying play 
selection in the National Football League (NFL), Kovash and Levitt (2009) found 
evidence to reject minimax play as passing plays outperform running plays. Moreover, 
teams switch too frequently between play types to be random (Kovash & Levitt, 2009; 
Emara et al., 2017). McGarrity and Linnen (2010), however, found that NFL offenses 
demonstrate strategic behavior in other ways. A team’s mix of runs and passes does 
not change when a substitute quarterback replaces an injured starting quarterback and 
teams randomize play types when only first-and-ten plays are considered. 

Why do some professionals play minimax, but others do not when all are highly 
experienced and motivated? One reason may be that the analyses of sports settings 
have often relied on assumed choice sets which may not reflect the real-world choices 
made by players. This problem becomes more acute as the complexity of the game 
increases, such as in the cases of baseball and American football. This paper 
addresses this issue by identifying the real-world choices made by a representative 
American college football team and subsequently examining whether players make 
optimal decisions. 

Third Downs in College Football 

The Role of Third Downs 

Football games consist of drives, or sequences of plays in which one team’s 
offense competes against the opposing team’s defense. The offense attempts to 
advance the ball to score points while the defense attempts to prevent them from doing 
so. The offense is given four downs (i.e., plays) at the beginning of each drive to 
advance a total of ten yards. “First down” corresponds to the first play in the set of 
downs, “second down” corresponds to the second play, and so forth. Gaining the ten 
yards converts a first down, in which the offense is awarded a new set of four downs to 
continue its drive. Failing to convert transfers possession of the ball to the opposing 
team. 

Scoring drives typically require the offense to execute a series of plays that 
intermittently earn first downs. Consequently, third downs play a more critical role in 
sustaining drives than any other down. An offense that fails to convert on first or second 
down has additional opportunities to gain the necessary yardage. Fourth down may be 
used to run an offensive play, but game strategy often dictates that teams use it in other 
ways. In this sample, UCA ran an offensive play on just 44 of the fourth downs following 
one of their 304 failed third-down attempts (14.5%). Accordingly, third-down plays 
frequently determine whether an offense will continue its drive. Hence, third down is 
known as “the money down.” 

Third downs are the preferred play to examine strategic behavior in American 
football because it is the down where each team’s goals are the clearest. It can be 
assumed that, on a typical third down, the offense has the immediate goal of converting 
while the defense has the immediate goal of preventing the conversion. This 
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assumption does not hold on first and second down given the additional opportunities to 
convert.  

 

Previous literature has considered this and used other measures of success (i.e., 
yards gained, change in net expected points) to examine minimax. However, such 
measures may not reflect the offense’s goals. For instance, offenses often use first or 
second down to manipulate the defense into playing a particular strategy or to learn 
about a defense’s strategy. These plays are important to the offense’s overall success 
but may not be captured by traditional measures of success. For example, an offense 
may throw a long pass on first down to manipulate the defense into defending the pass 
more frequently. Whether the pass is completed is irrelevant to the offense’s strategy. 

Game Planning to Conserve Cognitive Resources 

In-game strategy is dictated by the situations that arise in the game. While the 
number of possible situations is numerous, coaches possess scarce cognitive 
resources to address them in real time. A key part of decision making, then, is game 
planning, or preparing for potential in-game scenarios before the game arrives.  

Interviews with a UCA coach revealed that one component of third-down game 
planning is discretizing distance to a first down to simplify in-game decision making. 
Coaches create a set of contiguous bins that stretch across the possible third down 
distances to organize play calls. An offensive game plan then includes pools of plays 
that coaches favor in each of the various third-down groupings. The intent is to apply 
similar strategy to each distance within a bin, but the strategies applied across bins may 
be distinct.  

Discretizing distance to a first down reduces the number of real-time decisions to 
be made. Coaches can conserve their cognitive resources by pre-determining the in-
game situations that are similar enough to approach with the same strategy. This 
grouping practice can be empirically exploited to determine whether such simplifying 
strategies facilitate optimal decision making in complex settings. 

Theoretical Framework 

Third downs can be modeled as a 2x2 normal-form game between two players, 
where the offense competes against the defense. The offense attempts to maximize the 
probability of converting on third down while the defense attempts to minimize the 
offense’s probability of converting. Though the strategy spaces for both players are 
nuanced, each team’s actions can be simplified to two options. The offense can run (R) 
or pass (P) the ball and the defense can defend the run (R) or pass (P). Simplification is 
possible because the expectation in a mixed-strategy Nash equilibrium is that all plays 
called with positive probability have equal payoffs (Gauriot, Page, & Wooders, 2023). 
The outcome of the play is clear and determined quickly. 

Figure A presents the offense’s payoff matrix. The offense’s probabilities of 
converting on third down are represented by the four quantities π_OD, where O is the 
offense’s play call (O= R,P) and D is the defense’s play call (D=R,P). Because the third-
down play is a zero-sum game, where either the offense converts or the defense 
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prevents conversion, the defense’s probabilities of preventing a third-down conversion 
can be expressed as 1 − 𝜋𝑂𝐷. 

 

Figure A 

Third-Down Conversion Payoff Matrix 

 Defensive Play Type 

Offensive Play Type R P 

R 𝜋𝑅𝑅 𝜋𝑅𝑃 

P 𝜋𝑃𝑅 𝜋𝑃𝑃 

Note: Each cell represents the offense’s probability of converting on third-
down, 𝜋𝑂𝐷. 

 

The probability that the offense converts on third down depends, in part, on the 
choices made by the defense. Likewise, the probability of the defense preventing a 
conversion depends on the strategy employed by the offense. Thus, two assumptions 
can be made about the offense’s probability of converting.  

 

ASSUMPTION 1: 

(1) 𝜋𝑃𝑅 > 𝜋𝑅𝑅 and 𝜋𝑅𝑃 > 𝜋𝑃𝑃 

ASSUMPTION 2: 

(2) 𝜋𝑅𝑃 > 𝜋𝑅𝑅 and 𝜋𝑃𝑅 > 𝜋𝑃𝑃 

 

Assumption 1 states that the offense is more likely to convert when they choose 
a play type the defense is not prepared to defend. If the offense knew what play type 
the defense expected, they would call a play of the opposite type. Assumption 2 states 
the offense is less likely to convert when the defense calls a play designed to defend 
the offense’s play type. If the defense knew what play type the offense would call, the 
defense would choose to match it. This is the matching pennies game (McGarrity & 
Linnen, 2010). 

atching pennies requires simultaneous play. If not, one player has a second-
mover advantage. Though challenges in observing the defense’s strategy prevent a 
formal test, the simultaneous-play assumption is reasonable because game rules 
restrict time between plays. Moreover, strategic differences make this assumption 
stronger in college football than in the NFL as previously modeled by Kovash and Levitt 
(2009), McGarrity and Linnen (2010), and Emara et al. (2017). NFL offenses actively 
seek a second-mover advantage by authorizing quarterbacks to change the play 
selection after surveying the defense. College quarterbacks are not typically given this 
same autonomy. 
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With enough iterations, the matching pennies game converges to a mixed-
strategy Nash equilibrium. Of interest to this analysis is the equilibrium prediction that a 
player’s probabilities of success are equalized across each strategy. Specifically, the 
probability the offense converts on third down (defense prevents) should be the same 
when passing or running the ball (defending the pass or run). If not, the offense 
(defense) is failing to maximize the overall probability with which it converts (prevents) 
on third down. This equilibrium prediction is testable for the offense but not the defense 
as only the offense’s strategy is readily observed. 

Data 

The data is comprised of UCA’s offensive third downs played in regulation during 
the 2018, 2019, and 2020 football seasons. UCA is a member of the National Collegiate 
Athletic Association’s Division 1 Football Championship Subdivision (FCS), the second 
most prominent division of college athletics. Though membership may vary from year to 
year, the FCS is typically comprised of nearly 130 member institutions. These schools 
span 37 states and the District of Columbia. Each institution must meet membership 
requirements, such as minimum financial aid and sport sponsorship requirements, that 
create a group of similar football-playing institutions. Accordingly, I use UCA as a 
representative university. 

The data were obtained by viewing each of UCA’s 33 games played during these 
three seasons. Among the observable features of each play are the defensive team, the 
offense’s play type, whether the play resulted in a first down, and several in-game 
characteristics that may affect play calling and third-down conversion rates. These 
include the distance to a first down, point margin (UCA’s score minus the opponent’s), 
field position, and game clock features, such as the quarter of play and whether the 
game is within the two-minute mark of each half. 

Each play is categorized as a run or pass. Pass plays encompass all designed 
pass plays, including those that did not result in the quarterback passing the ball. This 
distinction is important for two reasons. First, quarterbacks may scramble, or run the 
ball, instead of throwing the ball on designed pass plays. Quarterbacks with scrambling 
ability create additional optionality within passing plays, making called pass plays 
relatively more attractive. In this sample, UCA’s quarterback scrambled on 5.7% of the 
team’s pass plays, half of which converted a first down. Second, defenses can defend a 
pass by sacking the quarterback, or tackling him before he throws the ball. An offense’s 
inability to avoid sacks make designed pass plays relatively less attractive. UCA’s 
quarterback was sacked on 9.1% of its third-down pass plays. 

Of note is that I include third downs occurring in the second half of games 
because they carry more pressure than those occurring earlier in the game. Teams 
have time to recover from failed third-down attempts in the first half, but the pressure to 
execute increases as the time remaining in the game dwindles. In these situations, the 
strategic decisions made by the two teams are critically important to the outcome of the 
game. Moreover, second-half plays reflect halftime adjustments. That is, they 
incorporate in-game learning. 

Third-down plays that are not well modeled by the matching pennies game are 
excluded. Specifically, third downs converted because of defensive penalties rather 
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than an offensive play are omitted. Likewise, third-down plays used to manage the 
game clock rather than attempt to convert were dismissed. Clock-management plays 
include “spikes” to stop a running clock or “kneels” to keep the clock running. In total, 
there are 476 third-down plays in the sample. Table 1 provides summary statistics. 

 

Table 1 

Summary Statistics 

Variable Mean Std. Dev. Min. Max 

Conversion 0.361 - 0 1 

Pass 0.739 - 0 1 

Yards to First 7.286 4.911 1 35 

Distance to First 
(Category) 

    

Short (1-3 yards) 0.233 - 0 1 

Medium (4-6 yards) 0.263 - 0 1 

Long (7-12 yards) 0.376 - 0 1 

Extra Long (13+ 
yards) 

0.128 - 0 1 

Point Margin -1.458 12.527 -34 42 

Quarter     

1st 0.252 - 0 1 

2nd 0.286 - 0 1 

3rd 0.231 - 0 1 

4th 0.231 - 0 1 

Two Minute 0.076 - 0 1 

Yards to TD 52.513 24.145 1 99 

Field Position (Category)     

Shadow 0.040 - 0 1 

Open Field 0.824 - 0 1 

Red Zone 0.137 - 0 1 

Home 0.408 - 0 1 

Note: The sample includes 476 observations comprised of 
UCA’s offensive 3rd downs played in regulation during the 2018-
2020 seasons. 
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Third Down by Distance to First 

Interviews with a UCA coach informed the structure of game situation variables 
to reflect the decision-making processes involved in play selection. Most importantly is 
the way in which distance to a first down is viewed. Though traditionally measured in 
yards as a continuous variable (Kovash & Levitt, 2009; McGarrity & Linnen, 2010; 
Emara et al., 2017), play callers discretize distance to a first down to simplify in-game 
decision making. I construct the “distance to a first down” variable to reflect the way in 
which UCA groups third-down distances. Specifically, distance to a first down is a 
categorical variable that includes short-yardage (1-3 yards), medium-yardage (4-6 
yards), long-yardage (7-12 yards), and extra-long-yardage situations (13+ yards). 
Grouping these decisions into bins effectively reduces the many unique decisions into 
four decisions. 

This discretization technique leads to two empirical questions. First, does the 
offense treat each yardage within a bin as though it is the same distance? Second, does 
the offense play minimax across each distance grouping and within each distance 
grouping? Table 2 provides a first attempt to answer these questions using a series of 
Chi-squared tests similar to Walker and Wooders (2001) and Hsu, Huang, and Tang 
(2007). 

Consider first the way in which the coach treats each distance within a bin. For 
each bin, the coach may choose from a pool of plays. Because a given pool of plays is 
available when facing each distance within a bin, the strategy applied to each respective 
distance should converge as the number of attempts increases so that all distances 
within the bin are treated as though they are the same distance. Given a large enough 
sample, discretization should yield homogeneity of strategy within each distance bin.  

A Pearson’s Chi-squared test is applied to examine whether there are equal 
distributions of pass plays across each yardage included in a respective distance bin. 

Let 𝑂𝑃
𝑑 represent the probability with which UCA’s offense 𝑂 elects to pass 𝑃 when 

facing distance in yards 𝑑. The null hypothesis when examining the short yardage 

distance bin is then 𝐻𝑜: 𝑂𝑃
1 = 𝑂𝑃

2 = 𝑂𝑃
3. Similar null hypotheses are constructed for each 

respective distance bin.  

Traditionally, p-values are used to determine how likely it is that the null 
hypothesis is not true. In this case, the p-value is examined to determine how likely it is 
that the data is compatible with the null hypothesis. To be clear, it cannot be proved that 
the null hypothesis is true, but a larger p-value signals an increased likelihood that the 
null is true.  

The results in Table 2 reveal that homogeneity of strategy exists within the 
medium-, long-, and extra-long-yardage bins with reasonable likelihood (p-values of 
0.354, 0.355, and 0.244, respectively). However, the null hypothesis is rejected at the 
1% level in the short-yardage bin, suggesting that each distance within the short-
yardage bin is not approached with similar strategy. This result is driven by the strategy 
on third-and-one plays, where runs are twice as likely to be called than on third-and-two 
and third-and-three. In fact, third-and-one is the only distance in the data set where runs 
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are more likely to be called than passes, suggesting that third-and-one is a special 
case. 

The second consideration is whether UCA’s offense played mixed strategies 
across and within each distance bin, specifically with respect to the prediction of 
equalized success probabilities across runs and passes. This, too, can be examined 

using a Pearson’s Chi-squared test. Let 𝜋𝑂
𝑑 represent the offense’s probability of 

converting when choosing to run 𝑅 or pass 𝑃 when facing distance in yards 𝑑. The null 

hypothesis for each distance is then 𝐻𝑜: 𝜋𝑅
𝑑 = 𝜋𝑃

𝑑. 

Table 2 indicates that the null hypothesis of equalized success probabilities 
across runs and passes is rejected at the 10% level in short-yardage situations as run 
plays outperformed passing plays. UCA converted 68.3% of its runs in short-yardage 
distances compared to just 50% of its passes, driven primarily by the disparity in 
conversion rates in third-and-two situations. This statistically significant difference 
suggests that UCA did not run the ball enough on third-and-two to be consistent with 
optimal play. 

The null hypothesis cannot be rejected at conventional levels in medium-, long-, 
and extra-long-yardage situations. The respective p-values are 0.358 in medium-
yardage situations, 0.201 in long-yardage situations, and 0.889 in extra-long-yardage 
situations, which are comparable to the p-values found by Walker and Wooders (2001) 
and Hsu, Huang, and Tang (2007). These results provide support for equilibrium play 
and are strongest in the extra-long-yardage bin. However, it is worth noting that not all 
distances within each bin were played optimally as UCA did not pass the ball enough on 
third-and-five and third-and-nine to be optimal.  

The Pearson’s Chi-squared tests provide an important first approximation of the 
strategic behavior exhibited by UCA’s offense. However, the decision to run or pass and 
the success of that decision is likely to be affected by game situations that are not 
controlled for in these tests. A more rigorous examination is required. 
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 Table 2 

Third Downs by Distance to First Down 

 Play Type (#)  
Run Pass 
Mix (%) 

   
Conversio

ns (#) 
 

Conversion 
Rate 

 𝐻0: 𝜋𝑅
𝑑 = 𝜋𝑃

𝑑 

Distance R P 
Tota

l 
 R P 𝜒2 p-value  R P  R P  𝜒2 

p-
value 

Short 63 48 111  
0.56

8 
0.43

2 
   43 24  0.683 0.500  

3.794
0 

0.051* 

1 39 10 49  
0.79

6 
0.20

4 
   28 7  0.718 0.700  

0.012
6 

0.911 

2 12 19 31  
0.38

7 
0.61

3 
   10 8  0.833 0.421  

5.134
1 

0.023*
* 

3 12 19 31  
0.38

7 
0.61

3 
   5 9  0.417 0.474  

0.096
5 

0.756 

𝐻0: 𝑂𝑃
1 = 𝑂𝑃

2 = 𝑂𝑃
3 

18.637
9 

0.000**
* 

         

Medium 20 105 125  
0.16

0 
0.84

0 
   6 43  0.300 0.410  

0.845
5 

0.358 

4 8 37 45  
0.17

8 
0.82

2 
   3 16  0.375 0.432  

0.088
9 

0.766 

5 9 36 45  
0.20

0 
0.80

0 
   1 17  0.111 0.472  

3.912
0 

0.048*
* 

6 3 32 35  
0.08

6 
0.91

4 
   2 10  0.667 

0.312
5 

 
1.527

0 
0.217 

𝐻0: 𝑂𝑃
4 = 𝑂𝑃

5 = 𝑂𝑃
6 2.0786 0.354          

  



11 
 

Long 32 147 179  
0.17

9 
0.82

1 
   6 44  0.188 0.299  

1.632
3 

0.201 

7 6 32 38  
0.15

8 
0.84

2 
   3 10  0.500 0.313  

0.789
2 

0.374 

8 4 21 25  
0.16

0 
0.84

0 
   0 5  0.000 0.238  

1.190
5 

0.275 

9 5 21 26  
0.19

2 
0.80

8 
   0 9  0.000 0.429  

3.277
3 

0.070* 

10 11 50 61  
0.18

0 
0.82

0 
   3 16  0.273 0.320  

0.094
0 

0.759 

11 6 12 18  
0.33

3 
0.66

7 
   0 2  0.000 0.167  

1.125
0 

0.289 

12 0 11 11  
0.00

0 
1.00

0 
   N/A 2  N/A 0.181  N/A N/A 

𝐻0: 𝑂𝑃
7 = 𝑂𝑃

8 = 𝑂𝑃
9 = 𝑂𝑃

10 = 𝑂𝑃
11 = 𝑂𝑃

12 5.5298 0.355          

Extra 
Long 

9 52 61  
0.14

8 
0.85

2 
   1 5  0.111 0.096  

0.019
4 

0.889 

𝐻0: 𝑂𝑃
13 = ⋯ = 𝑂𝑃

35 
16.087

1 
0.244          

Totals 124 352 476  
0.26

1 
0.73

9 
   56 116  0.452 0.330  

5.920
6 

0.015*
* 

𝐻0: 𝑂𝑃
1 = ⋯ = 𝑂𝑃

35 
111.04

39 
0.000**

* 
         

Notes: 𝜒2 represents the Pearson statistic. 𝑂𝑃
𝑑 represents the offense’s probability of passing when facing distance 𝑑. 

𝜋𝑂
𝑑 represents the offense’s probability of converting when choosing to run 𝑅 or pass 𝑃 when facing distance 𝑑. Extra-

long yardages are not individually displayed due to the limited number of plays when facing each respective distance. 
*P<0.10, **P<0.05, ***P<0.01 
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Econometric Approach 

Formally investigating the predictions of mixed strategy involves the use of a 
binary response model. Probit and logit models are common in the mixed-strategy 
literature using sports data in which there is a need to control for the game situation 
(McGarrity & Linnen, 2010; Downey & McGarrity, 2015; Emara et al., 2017). However, 
the relatively small sample size in this paper requires more care in selecting the 
appropriate estimation technique. 

To see this, consider the conditional probability of the logit and probit models 
given by equation (1). 

 

 𝑝𝑖 = 𝑃𝑟(𝑦𝑖 = 1|𝑥) = 𝐹(𝑥𝑖𝛽)  (1) 

 

In this equation, 𝑝 is the probability with which the outcome variable is equal to 1, 
𝑖 indicates the third-down play, 𝑥 is a vector of independent variables, and 𝛽 is a vector 
of estimated coefficients for the independent variables. The logit model specifies that 
𝐹(∙) is the cumulative distribution function of the logistic distribution, while the probit 
model specifies that 𝐹(∙) is the standard normal cumulative distribution function. In both 
models, 𝛽 is estimated by way of maximum likelihood. 

A maximum likelihood estimate exists if the solution to the log likelihood function 
is finite (Haberman, 1974). In small samples, though, finite solutions may not exist. One 
such case is when there is complete separation of the data. Complete separation 
occurs if the likelihood converges, but the outcome variable can be perfectly separated 
into a group (1 or 0 in a binary response model) by a single explanatory variable. Albert 
and Anderson (1984) show that if there is complete separation, the parameter estimate 

�̂� is infinite. Thus, the maximum likelihood estimate of �̂� does not exist. 

The data utilized in this paper suffer from complete separation. Consider that 
UCA failed to convert on third down in ten attempts when playing the University of 
Tulsa. The indicator variable for Tulsa, then, completely separates the outcome variable 
into the non-response group. For each play in which 𝑇𝑢𝑙𝑠𝑎 = 1, 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 =  0 and 

the maximum likelihood estimator leads to an infinite estimate of �̂�𝑇𝑢𝑙𝑠𝑎. Consequently, 
traditional logit and probit models are inappropriate estimation techniques. 

One way to address complete separation is to use the Firth logit. The Firth logit 

estimates �̂� by way of a penalized maximum likelihood estimator in which a correction is 
applied to the score function that generates the maximum likelihood estimate (Firth, 

1993). As Firth (p. 28) explains, “the bias in [�̂�] can be reduced by introducing a small 
bias into the score function.” Because the bias correction is applied to the score function 

rather than the estimate of �̂� itself, the penalized maximum likelihood estimator can be 

employed in cases where there is separation of the data and �̂� would otherwise be 
infinite. Heinze and Schemper (2002) demonstrate that the Firth logit guarantees finite 
estimates and is “an ideal solution” to the problem of separation (p. 2418). Accordingly, I 
employ the Firth logit. 
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Testing for Homogeneity Within Third-Down Bins 

To test whether strategies are homogenous within each distance bin, I split the 
full sample into four subsamples based on the respective distance bins. I run the 
following regression on each of the four subsamples: 

 

 𝑃𝑎𝑠𝑠𝑖 = 𝛼 + 𝛿𝑌𝑎𝑟𝑑𝑠𝑇𝑜𝐹𝑖𝑟𝑠𝑡𝑖 + 𝛽𝑋𝑖 + 𝜑𝑆𝐷 + 휀𝑖 (2) 

 

where 𝑃𝑎𝑠𝑠 is a dummy variable equal to one if the offense passed on third-down play 𝑖, 
𝑌𝑎𝑟𝑑𝑠𝑇𝑜𝐹𝑖𝑟𝑠𝑡 is a categorical variable indicating the yards to a first down in the 

respective distance bin, 𝑋 is a vector of control variables including point margin, quarter 
of play, whether the play occurred with two minutes or less to play in a half, field 
position, and whether UCA was the home team. 𝜑𝑆𝐷 represents season and defense 
dummies and 𝜖 is an error term. I then perform a Chi-squared test for joint significance 
on 𝑌𝑎𝑟𝑑𝑠𝑇𝑜𝐹𝑖𝑟𝑠𝑡 where the null hypothesis 𝐻0 is that each distance to a first down 
within a given distance bin is treated the same. 

The results of the short-, medium-, and long-yardage subsamples are presented 
in Table 3. The extra-long subsample is excluded due to the large quantity of unique 
distances (14), however, the Chi-2 statistic for joint significance of 𝑌𝑎𝑟𝑑𝑠𝑇𝑜𝐹𝑖𝑟𝑠𝑡 in this 
subsample is 2.66 with a p-value of 0.999. The null hypothesis cannot be rejected at 
conventional levels when the offense faces medium-, long-, and extra-long-yardage 
distances. This provides support for homogeneity of strategy for each distance within 
these respective bins. However, the null hypothesis is rejected at the 5% level when the 
offense is in short-yardage situations, suggesting that heterogeneous strategies are 
applied to the distances within the short-yardage bin. 

 

 Table 3 

Testing for Homogeneity Within Third Down Bins 

 Dependent Variable: Pass 

 Distance to Fist 

 Short  Medium  Long 

Yards to First      

   2 1.626** 

(0.016) 

 
 

  

   3 1.642** 

(0.012) 

 
 

  

   5 
 

 0.147 

(0.839) 
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   6 
 

 0.875 

(0.250) 

  

   8 
 

 
 

 -0.820 

(0.362) 

   9 
 

 
 

 0.268 

(0.754) 

   10 
 

 
 

 -0.673 

(0.387) 

   11 
 

 
 

 -1.311 

(0.175) 

   12 
 

 
 

 1.604 

(0.377) 

Chi-2 Statistic: Joint 
Significance of Yards to 
First 

8.94** 

(0.011) 

 1.52 

(0.468) 

 5.02 

(0.413) 

Full Set of Controls? Yes  Yes  Yes 

Season FE? Yes  Yes  Yes 

Defense FE? Yes  Yes  Yes 

Season X Defense? Yes  Yes  Yes 

Penalized Log Likelihood -50.870  -43.574  -51.577 

N 111  125  179 

Notes: Dependent variable is a binary response equal to 1 if the 
offense passed. Base case for Short is 1 yard; for Medium is 4 
yards; for Long is 7 yards. Controls include point margin, quarter, 
two-minute, field position, and home. P-values in parentheses. 
*P<0.10 **P<0.05 ***P<0.01. 

 

The “Short” column in Table 3 reflects results for the third-and-short subsample. 
The base case for Yards to First is one yard. Both third-and-two and third-and-three are 
statistically significant at conventional levels, suggesting they are not treated the same 
as third-and-one. The coefficients suggest that UCA is more likely to pass on third-and-
two and third-and-three than they are on third-and-one, consistent with the results in 
Table 2. The results do suggest, though, that the play calling strategies applied to third-
and-two and third-and-three are not different from each other. This implies that third-
and-one is a special case. 

That third-and-one is a special case may be due to risk aversion (Romer, 2006; 
Goff & Locke, 2019; Yam & Lopez, 2019). Consider that across all UCA’s offensive 
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plays in the 2018-20 seasons, the median run play gained three yards while the median 
pass play gained just two yards. Moreover, 78.3% of UCA’s runs gained at least one 
yard compared to just 52.9% of passes. Running the ball on third-and-one appears to 
provide more certainty than passing.  

Running the ball on third-and-one may also be safer in terms of fan support. A 
team that regularly passes on third-and-one but fails to convert can expect to receive 
the ire of the fan base. Yet, the football community has a mantra to support failed 
rushing attempts on third-and-one: “we don’t deserve to win if we can’t gain a yard” 
(Pompei, 2012; Alper, 2019).  

Testing for Equal Expected Payoffs 

There are two considerations when examining the equilibrium prediction of 
equalized success probabilities when running or passing the ball. First, does UCA play 
each distance grouping optimally? Second, does UCA play each distance within a 
distance bin optimally? 

To test whether UCA plays each distance grouping optimally, I split the full 
sample into three subsamples restricted to short-, medium-, and long-yardage plays, 
respectively. Extra-long-yardage situations are excluded because the small number of 
observations (61) and the volume of perfect predictions prevent valid estimations. The 
estimated equation is: 

 

 𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑖 = 𝛼 + 𝛿𝑃𝑎𝑠𝑠𝑖 + 𝛽𝑋𝑖 + 𝜑𝑆𝐷 + 휀𝑖 (3) 

 

where 𝐶𝑜𝑛𝑣𝑒𝑟𝑡 is a dummy variable equal to one if the offense converted on third-down 
play 𝑖, 𝑃𝑎𝑠𝑠𝑖 is an indicator variable equal to one if the offense passed, and 𝑋𝑖 is the 
same vector of game controls described above. Season and defense indicator 
variables, 𝜑𝑆𝐷, are included to allow the payoffs to be season and matchup specific. A 
season-defense interaction is also included. 

The parameter of interest, 𝛿, is the coefficient on whether the offense passed. 
The null hypothesis 𝐻𝑂 is that the likelihood of conversion is equal when passing or 
running. If the offense played mixed strategies, 𝛿 should be equal to zero. The null 
hypothesis cannot be proved, but a larger p-value signals an increased likelihood that 
the null is true. 

To test whether UCA plays each distance within a distance bin optimally, I 
introduce interaction terms into equation (3). The estimated equation is:  

 

 𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑖 = 𝛼 + 𝛿𝑃𝑎𝑠𝑠𝑖 + 𝛾𝑌𝑎𝑟𝑑𝑠𝑇𝑜𝐹𝑖𝑟𝑠𝑡𝑖 + 𝜔𝑃𝑎𝑠𝑠𝑖𝑌𝑎𝑟𝑑𝑠𝑇𝑜𝐹𝑖𝑟𝑠𝑡𝑖 + 𝛽𝑋𝑖 + 𝜑𝑆𝐷 + 휀𝑖 (4) 

 

where 𝐶𝑜𝑛𝑣𝑒𝑟𝑡 is a dummy variable equal to one if the offense converted on third-down 
play 𝑖, 𝑃𝑎𝑠𝑠𝑖 is an indicator variable equal to one if the offense passed, 𝑌𝑎𝑟𝑑𝑠𝑇𝑜𝐹𝑖𝑟𝑠𝑡𝑖 is 
an indicator variable equal to one if the distance faced on play 𝑖 is a specified distance, 
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and 𝑃𝑎𝑠𝑠𝑖𝑌𝑎𝑟𝑑𝑠𝑇𝑜𝐹𝑖𝑟𝑠𝑡𝑖 is an interaction term between 𝑃𝑎𝑠𝑠𝑖 and 𝑌𝑎𝑟𝑑𝑠𝑇𝑜𝐹𝑖𝑟𝑠𝑡𝑖. The 
parameters of interest in equation (4) are 𝛿, 𝛾, and 𝜔. The null hypothesis 𝐻𝑂 is that the 
likelihood of conversion is equal when passing or running. If the offense played 
optimally, 𝛿, 𝛾, and 𝜔 should be equal to zero.  

Table 4 presents the results for the short-yardage bin. Column 1 reflects equation 
(3). The p-value on 𝛿 is 0.820, which fails to reject the null hypothesis. This provides 
reasonably strong support that UCA’s success probabilities are equalized when running 
and passing the ball in short-yardage situations. Columns 2 and 3 reflect equation (4), 
with emphasis placed on third-and-two given the results of Table 2. In both estimations, 
the parameters of interest are statistically insignificant. This supports the notion that 
UCA played mixed strategies when facing each distance within the short-yardage bin.  

Table 4 

Testing Equal Payoffs – Short Yardage 

 Dependent Variable: Conversion 

 (1) (2) (3) 

Pass 0.113 

(0.820) 

0.230 

(0.690) 

1.409 

(0.194) 

Yards to First    

   2 
 

0.679 

(0.460) 

0.903 

(0.359) 

   3 
  

-0.721 

(0.398) 

Pass × 2 
 

-0.687 

(0.540) 

-2.119 

(0.173) 

Pass × 3 
  

-1.287 

(0.361) 

Point Margin -0.069 

(0.118) 

-0.064 

(0.156) 

-0.065 

(0.139) 

Quarter    

2nd -0.200 

(0.768) 

-0.232 

(0.732) 

-0.175 

(0.803) 

3rd -0.080 

(0.899) 

-0.098 

(0.875) 

-0.186 

(0.773) 

4th 1.748** 

(0.040) 

1.684** 

(0.048) 

1.729** 

(0.050) 



17 
 

Two Minute -0.663 

(0.527) 

-0.481 

(0.656) 

0.221 

(0.849) 

Field Position    

Red Zone -0.269 

(0.637) 

-0.343 

(0.551) 

-0.455 

(0.451) 

Shadow 2.154 

(0.277) 

2.185 

(0.270) 

2.632 

(0.225) 

Home 0.448 

(0.678) 

0.508 

(0.648) 

0.653 

(0.581) 

Constant -0.013 

(0.990) 

-0.051 

(0.960) 

0.633 

(0.576) 

Season FE? Yes Yes Yes 

Defense FE? Yes Yes Yes 

Season x Defense? Yes Yes Yes 

Penalized Log 
Likelihood 

-54.721 -54.122 -52.244 

N 111 111 111 

Notes: Dependent variable is a binary response equal to 1 if the 
offense converted. Base case for Yards to First is 1 yard; for 
Quarter is 1st; for Field Position is Open Field. P-values in 
parentheses. **P<0.05 and ***P<0.01. 

 

Table 5 presents results for medium-yardage plays. Column 1 reflects equation (3). The 
p-value on the estimated parameter for pass is 0.468. The null hypothesis cannot be 
rejected at conventional levels, supporting the notion that UCA played the group of 
medium-yardage distances optimally. Columns 2 and 3 reflect equation (4), with 
emphasis on third-and-five given the results of Table 2. The parameters of interest are 
statistically insignificant in both estimations. This suggests that UCA played minimax 
when facing each distance within the medium-yardage bin.  
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Table 5 

Testing Equal Payoffs – Medium Yardage 

 Dependent Variable: Conversion 

 (1) (2) (3) 

Pass 0.531 

(0.468) 

0.508 

(0.549) 

0.747 

(0.468) 

Yards to First    

   5 
 

0.478 

(0.713) 

0.857 

(0.546) 

   6 
  

1.225 

(0.454) 

Pass × 5 
 

-0.075 

(0.957) 

-0.364 

(0.809) 

Pass × 6 
  

-1.075 

(0.547) 

Point Margin -0.086** 

(0.030) 

-0.083** 

(0.039) 

-0.079* 

(0.053) 

Quarter    

2nd 0.685 

(0.277) 

0.755 

(0.240) 

0.785 

(0.230) 

3rd -0.168 

(0.808) 

-0.189 

(0.786) 

-0.157 

(0.827) 

4th 0.414 

(0.557) 

0.367 

(0.614) 

0.362 

(0.626) 

Two Minute -1.198 

(0.167) 

-1.211 

(0.187) 

-1.163 

(0.219) 

Field Position    

Red Zone -0.252 

(0.691) 

-0.254 

(0.687) 

0.316 

(0.623) 

Shadow 0.407 

(0.762) 

0.551 

(0.680) 

0.786 

(0.570) 

Home -0.341 -0.427 -0.366 
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(0.811) (0.766) (0.798) 

Constant -0.593 

(0.664) 

-0.741 

(0.608) 

-1.020 

(0.508) 

Season FE? Yes Yes Yes 

Defense FE? Yes Yes Yes 

Season x Defense? Yes Yes Yes 

Penalized Log 
Likelihood 

-59.590 -58.966 -58.905 

N 125 125 125 

Notes: Dependent variable is a binary response equal to 1 if the 
offense converted. Base case for Yards to First is 4 yards; for 
Quarter is 1st; for Field Position is Open Field. P-values in 
parentheses. *P<0.10 and **P<0.05. 

 

Table 6 presents results for the long-yardage bin. Column 1 reflects equation (3). The p-
value on the parameter of interest is 0.163, which fails to reject the null hypothesis at 
conventional levels. Thus, the evidence does not rule out that UCA played mixed 
strategies when facing long-yardage distances. Columns 2 and 3 reflect equation (4), 
emphasizing third-and-nine given the results of Table 2. Note that no estimation exists 
for Pass x 12 because UCA did not run on any third-and-twelve plays. The parameters 
of interest are statistically insignificant in each estimation, providing support for optimal 
play when facing each distance within the long-yardage bin. 

Overall, the evidence from regression analysis suggests that UCA plays optimally 
across the various distance bins the team has pre-defined. The evidence is strongest in 
the short-yardage bin and weakest in the long-yardage bin. The evidence also indicates 
that UCA plays each distance within the respective bins optimally.  Recall from Table 2 
that the fraction of third downs in which UCA passed ranged from a low of 43.2% in 
short-yardage situations to a high of 84.0% in medium-yardage situations (excluding 
extra-long yardage situations). The range of run-pass mixes coupled with these 
regression results suggest that UCA’s play selection is sophisticated enough to maintain 
equilibrium play while adjusting to the distance they face. 

Table 6 

Testing Equal Payoffs – Long Yardage 

 Dependent Variable: Conversion 

 (1) (2) (3) 

Pass 0.880 

(0.163) 

0.472 

(0.483) 

-0.692 

(0.593) 

Yards to First    
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   8 
  

-0.799 

(0.703) 

   9 
 

-1.011 

(0.574) 

-2.931 

(0.211) 

   10 
  

-1.379 

(0.281) 

   11 
  

-3.008 

(0.166) 

   12 
  

0.376 

(0.714) 

Pass × 8 
  

-0.015 

(0.995) 

Pass × 9 
 

1.685 

(0.375) 

3.302 

(0.182) 

Pass × 10 
  

1.356 

(0.321) 

Pass × 11 
  

2.044 

(0.374) 

Pass × 12 
  

 

 

Point Margin -0.056** 

(0.037) 

-0.059** 

(0.028) 

-0.057** 

(0.029) 

Quarter    

2nd 0.637 

(0.227) 

0.641 

(0.226) 

0.831 

(0.151) 

3rd 0.234 

(0.696) 

0.343 

(0.571) 

0.188 

(0.756) 

4th 0.083 

(0.895) 

0.242 

(0.708) 

0.447 

(0.499) 

Two Minute 0.126 

(0.879) 

0.042 

(0.962) 

0.420 

(0.669) 

Field Position    
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Red Zone -0.108 

(0.874) 

-0.087 

(0.899) 

-0.209 

(0.762) 

Shadow -0.278 

(0.772) 

-0.394 

(0.689) 

-0.507 

(0.620) 

Home -0.538 

(0.621) 

-0.453 

(0.677) 

-0.419 

(0.710) 

Constant -3.773** 

(0.023) 

-3.512** 

(0.034) 

-2.081 

(0.285) 

Season FE? Yes Yes Yes 

Defense FE? Yes Yes Yes 

Season x Defense? Yes Yes Yes 

Penalized Log 
Likelihood 

-71.787 -70.914 -68.950 

N 179 179 179 

Notes: Dependent variable is a binary response equal to 1 if the 
offense converted. Base case for Yards to First is 7 yards; for 
Quarter is 1st; for Field Position is Open Field. P-values in 
parentheses. *P<0.10 and **P<0.05. 

 

Conclusion 

Field studies of minimax have greatly improved our understanding of real-world 
strategic behavior. However, they have often relied on assumed choice sets that may 
deviate from the actual decisions made by players. This paper bridges the gap by 
identifying the real-world choice sets defined by UCA’s American college football team 
on third down, determining whether the team adheres to those pre-defined choice sets 
in practice, and testing whether the team plays according to the equilibrium prediction of 
mixed strategy.  

Playing minimax in complex, real-world situations – such as those provided in 
business and in politics – is difficult. To simplify this challenging task, UCA’s coaches 
reduce the number of decisions they must make by grouping similar scenarios together 
and subsequently applying parallel strategies. Evidence provided by statistical tests 
suggests that UCA applies homogenous strategies when facing medium-, long-, and 
extra-long-yardage situations, but not in short-yardage situations. Third-and-one, third-
and-two, and third-and-three are grouped into the short-yardage bin, but third-and-one 
is treated differently as run plays occur with higher frequency than on third-and-two and 
third-and-three. However, this run-pass mix equalized success probabilities, suggesting 
that third-and-one may warrant its own bin. 

A casual analysis of the equilibrium prediction of equalized success probabilities 
across strategies yielded that UCA played mixed strategies in most distance scenarios. 
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A more rigorous examination provided stronger evidence that UCA played optimally 
both across distance bins and within distance bins. This implies that reducing the 
number of decisions to be made by creating groupings can save cognitive resources 
and simplify the implementation of mixed strategies in complex, real-world settings. 
However, creating appropriate groupings can be difficult. 

I conclude with three caveats. First, this analysis relies on a relatively small 
sample of third-down plays, which restricts the ability to generate precise estimates. 
One may find different results should more plays become available. Second, this 
analysis is specific to a single team. Many American football teams implement 
discretization, but the exact nature of play calling described above is unique to UCA. 
Incorporating other teams into this analysis requires intimate knowledge of their play-
calling schemes. While UCA’s football program is similar to those of other FCS 
institutions, the generalizability of these results is dependent on the degree to which 
UCA is representative of other teams. Future work should consider the increasing role 
data analytics plays in college football and the opportunities that presents for 
understanding real-world decision making (Connelly, 2022). Academicians are not only 
well positioned to support their institution’s sports programs, but to use that access to 
answer some of the most pressing questions regarding strategic behavior. Finally, this 
analysis says nothing of the second equilibrium prediction of minimax. I leave 
investigations of serial independence to further work. 
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